Nouvelle publication dans la revue Nature !
Un article issu d'une collaboration fructueuse entre le LERMA et le LULI !
G. Revet, et al.
Laboratory disruption of scaled astrophysicaloutflows by a misaligned magneticfield
G. Revet1,2,3, B. Khiar4,5, E. Filippov1,6, C. Argiroffi7,8, J. Béard9, R. Bonito8, M. Cerchez10, S. N. Chen1,11,T. Gangolf2,10, D. P. Higginson2,12, A. Mignone13, B. Olmi8,14, M. Ouillé2, S. N. Ryazantsev6,15,I. Yu. Skobelev6,15, M. I. Safronova1, M. Starodubtsev1, T. Vinci2, O. Willi10, S. Pikuz6,15, S. Orlando8,A. Ciardi4 & J. Fuchs1,2
https://doi.org/10.1038/s41467-021-20917-x
ABSTRACT
The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and themagnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow ina collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric,disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to bea plausible key process regulating jet collimation in a variety of objects from our Sun’s out flows to extra galatic jets. Furthermore, they provide a possible interpretation for the observed structuring of astrophysical jets. Jet modulation could be interpreted as the sig-nature of changes over time in the outflow/ambient field angle, and the change in the direction of the jet could be the signature of changes in the direction of the ambient field.
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia. 2 LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France. 3 Centre Laser Intenses et Applications, Université de Bordeaux-CNRS-CEA, Talence, France. 4 Sorbonne Université, Observatoire de Paris, PSL Research University, LERMA, Paris, France. 5 Flash Center for Computational Science, University of Chicago, Chicago, USA. 6 Joint Institute for High Temperatures RAS, Moscow, Russia. 7 Dipartimento di Fisica e Chimica, Universitá di Palermo, Palermo, Italy. 8 INAF-Osservatorio Astronomico di Palermo, Palermo, Italy. 9 LNCMI, UPR 3228, CNRS-UGA-UPS-INSA, Toulouse, France. 10 Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany. 11 ELI-NP, Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania. 12 Lawrence Livermore National Laboratory, Livermore, CA, USA. 13 Dip. di Fisica, Universiá di Torino, Torino, Italy. 14 INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy. 15 National Research Nuclear University ‘MEPhI’, Moscow, Russia. ✉email: andrea.ciardi@obspm.fr; julien.fuchs@polytechnique.fr
Que voyons-nous sur l'image ?
Le jet est courbé par le champ magnétique ambiant. Cela est cohérent avec des observations astro (Cf. le détail dans le papier).
Plus l'angle est fort, plus le jet subit de pertes latérales de matière, ce qui est aussi cohérent avec les observations.
Hypothèse : Les manipulations démontrent qu'un paramètre important régule le devenir du jet à longue distance, à savoir : l'angle entre le jet et le champ magnétique ambiant.